961 resultados para Elastic Modulus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deconvolution method that combines nanoindentation and finite element analysis was developed to determine elastic modulus of thin coating layer in a coating-substrate bilayer system. In this method, the nanoindentation experiments were conducted to obtain the modulus of both the bilayer system and the substrate. The finite element analysis was then applied to deconvolve the elastic modulus of the coating. The results demonstrated that the elastic modulus obtained using the developed method was in good agreement with that reported in literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element models of bones can be created by deriving geometry from anx-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticityversus density relationship. Many elasticity–density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions – longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each directionwere determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined.A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic properties of the arterial wall have been the subject of physiological, clinical and biomedical research for many years. There is convincing evidence that the elastic properties of the large arteries are seriously impaired in the presence of cardiovascular disease (CVD), due to alterations in the intrinsic structural and functional characteristics of vessels [1]. Early detection of changes in the elastic modulus of arteries would provide a powerful tool for both monitoring patients at high cardiovascular risk and testing the effects of pharmaceuticals aimed at stabilizing existing plaques by stiffening them or lowering the lipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of arterial walls have long been recognized to play an essential role in the development and progression of cardiovascular disease (CVD). Early detection of variations in the elastic modulus of arteries would help in monitoring patients at high cardiovascular risk stratifying them according to risk. An in vivo, non-invasive, high resolution MR-phase-contrast based method for the estimation of the time-dependent elastic modulus of healthy arteries was developed, validated in vitro by means of a thin walled silicon rubber tube integrated into an existing MR-compatible flow simulator and used on healthy volunteers. A comparison of the elastic modulus of the silicon tube measured from the MRI-based technique with direct measurements confirmed the method's capability. The repeatability of the method was assessed. Viscoelastic and inertial effects characterizing the dynamic response of arteries in vivo emerged from the comparison of the pressure waveform and the area variation curve over a period. For all the volunteers who took part in the study the elastic modulus was found to be in the range 50-250 kPa, to increase during the rising part of the cycle, and to decrease with decreasing pressure during the downstroke of systole and subsequent diastole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anomalous variation in the experimental elastic modulus, E, of Ti-6Al-4V-xB (with x up to 0.55 wt.%) is reported. Volume fractions and moduli of the constituent phases were measured using microscopy and nanoindentation,respectively. These were used in simple micromechanical models to examine if the E values could be rationalized. Experimental E values higher than the upper bound estimates suggest complex interplay between microstructural modifications, induced by the addition of B, and properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of the amorphous matrix and crystalline dendrite phases on the hardness and elastic moduli of Zr/Ti-based bulk metallic glass matrix composites have been assessed. While the moduli of the composites correspond to those predicted by the rule of mixtures, the hardness of the composites is similar to that of the matrix, suggesting that the plastic flow in the composites under constrained conditions such as indentation is controlled by the flow resistance of the contiguous matrix. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For resonant column tests conducted in the flexure mode of excitation, a new methodology has been proposed to find the elastic modulus and associated axial strain of a cylindrical sample. The proposed method is an improvement over the existing one, and it does not require the assumption of either the mode shape or zero bending moment condition at the top of the sample. A stepwise procedure is given to perform the necessary calculations. From a number of resonant column experiments on aluminum bars and dry sand samples, it has been observed that the present method as compared with the one available in literature provides approximately (i) 5.9%-7.3% higher values of the elastic modulus and (ii) 6.5%-7.3% higher values of the associated axial strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the effects of crystallographic texture and microstructure on the elastic modulus of different grades of steel have been collected from the available literature and put in one place. It is expected that this will help researchers in their understanding of both the fundamental and the practical aspects of the different grades of steel used for various purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modulus variation of NiTi shape memory alloy has been investigated at microstructural level through nano dynamical mechanical analysis and compared with bulk experimental measurements. The differences between the modulus values at the macro and micro level as well as within the micro level are discussed and the corresponding variations have been explained based on the crystal structure, orientation and misorientation. The experimental results confirm a higher modulus value for the martensite phase that is in agreement with the theoretical predictions. (C) 2015 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 degrees C and post-curing at 120 degrees C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work done during indentation is examined using dimensional analysis and finite element calculations for conical indentation in elastic-plastic solids with work hardening. An approximate relationship between the ratio of hardness to elastic modulus and the ratio of irreversible work to total work in indentation is found. Consequently, the ratio of hardness to elastic modulus may be obtained directly from measuring the work of indentation. Together with a well-known relationship between elastic modulus, initial unloading slope, and contact area, a new method is then suggested for estimating the hardness and modulus of solids using instrumented indentation with conical or pyramidal indenters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effective elastic modulus and fracture toughness of the nanofilm were derived with the surface relaxation and the surface energy taken into consideration by means of the interatomic potential of an ideal crystal. The size effects of the effective elastic modulus and fracture toughness were discussed when the thickness of the nanofilm was reduced. And the dependence of the size effects on the surface relaxation and surface energy was also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between hardness (H), reduced modulus (E-r), unloading work (W-u), and total work (W-t) of indentation is examined in detail experimentally and theoretically. Experimental study verifies the approximate linear relationship. Theoretical analysis confirms it. Furthermore, the solutions to the conical indentation in elastic-perfectly plastic solid, including elastic work (W-e), H, W-t, and W-u are obtained using Johnson's expanding cavity model and Lame solution. Consequently, it is found that the W-e should be distinguished from W-u, rather than their equivalence as suggested in ISO14577, and (H/E-r)/(W-u/W-t) depends mainly on the conical angle, which are also verified with numerical simulations. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is compared with that based on the tension-shear chain model and finite element simulation, respectively. It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By increasing the number of hierarchy level, the shear-lag result is consistent with the finite element result. However the tension-shear chain model leads to an opposite trend. The transition point position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The viscoelastic deformation of Ce-based bulk metallic glasses (BMGs) with low glass transition temperature is investigated at room temperature. Contact stiffness and elastic modulus of Ce-based BMGs cannot be derived using the conventional Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)]. The present work shows that the time dependent displacement of unloading segments can be described well by a generalized Kelvin model. Thus, a modified Oliver-Pharr method is proposed to evaluate the contact stiffness and elastic modulus, which does, in fact, reproduce the values obtained via uniaxial compression tests. (c) 2007 American Institute of Physics.